
www.MathWorksheetsGo.com
On Twitter: twitter.com/engagingmath
On FaceBook: www.mathworksheetsgo.com/facebook

I. Model Problems.
 II. Practice
 III. Challenge Problems
 IV. Answer Key

Web Resources

Relations \& Functions : www.mathwarehouse.com/algebra/relation/
Domain and Range of a Function/relation:
www.mathwarehouse.com/algebra/relation/math-function.php
© $\frac{\text { www.MathWorksheetsGo.com }}{\text { Commercial Use Prohibited }}$
Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Graph Paper Maker (free): www.mathworksheetsgo.com/paper/
Online Graphing Calculator(free): www.mathworksheetsgo.com/calculator/

Functions versus Relations

A function is a relation in which each element of the domain maps to exactly on element of the range.

I. Model Problems

In these examples we will determine if the relation is a function, identify the domain, and identify the range.
Example 1: $\{(-6,7),(8,14),(3,2),(1,-4)\}$
Check the ordered pairs to determine if every x-value maps to exactly one y-value.
Domain is the x-values.
Range is the y-values

$$
\begin{gathered}
\{(-6,7),(8,14),(3,2),(1,-4)\} \\
\{(-6,7),(8,14),(3,2),(1,-4)\} \\
D=\{-6,1,3,8\} \\
\{(-6,7),(8,14),(3,2),(1,-4)\} \\
R=\{-4,2,7,14\}
\end{gathered}
$$

Answer: function, $D=\{-6,1,3,8\}, R=\{-4,2,7,14\}$
Example 2: $\{(4,-11),(3,1),(0,1),(2,6),(3,-1)\}$
Check the ordered pairs to determine if every $\{(4,-11),(3,1),(0,1),(2,6),(3,-1)\}$
x-value maps to exactly one y-value.
$x=3$ maps to both $y=1$ and $y=-1$
$\{(4,-11),(3,1),(0,1),(2,6),(3,-1)\}$
Domain is the x-values.

Range is the y-values
$\{(4,-11),(3,1),(0,1),(2,6),(3,-1)\}$
$D=\{0,2,3,4\}$
$\{(4,-11),(3,1),(0,1),(2,6),(3,-1)\}$ $R=\{-11,-1,1,6\}$
Answer: not a function, $D=\{0,2,3,4\}, R=\{-11,-1,1,6\}$
Example 3: $y=3 x+4$

Is there a value of x that maps to more than one y ? If needed, check with vertical line test. The vertical lines represent x-values. If the lines do not hit the graph more than once the relations are functions.

(scale of graph is one)
Domain is the x-values. The line continues in both directions.
Range is the y-values. The line continues in both directions.
Answer: not a function, $D=\{x \mid x \in \mathbb{R}\}, R=\{x \mid x \in \mathbb{R}\}$

II. Practice Problems

Determine if the relation is a function

1. $\{(3,4),(4,-6),(5,-7),(3,2),(-2,5)\}$
2. $\{(-4,6),(-3,2),(1,0),(7,6),(8,2)\}$
3. $\{(-3,4),(-2,5),(0,0),(-2,5),(4,8)\}$
4.

5.

7.

9.

11. $x=y^{2}$
13. $y=x^{2}$
6.

8.

10. $y=2 x-4$
12. $x=\sqrt{y}$

Determine the Domain and Range of each relation.

14. $\{(-5,1),(-3,0),(-1,2),(0,3)\}$
15. $\left(\frac{2}{3},-1\right),\left(\frac{-3}{4}, 0\right),\left(\frac{-2}{3}, 1\right),\left(\frac{3}{5}, 0\right),\left(\frac{3}{4}, 1\right)$
16. $\left\{\left(-4, \frac{1}{2}\right),\left(-2, \frac{1}{4}\right),\left(0, \frac{1}{2}\right),\left(1, \frac{1}{4}\right)\right\}$
17.

18.

20. $y=x^{2}-3$
19.

21. $y=|x-4|$

III. Challenge Problems

1. Is the relation graphed below a function? Justify your answer.

2. Is a person's weight a function of their height? Why?
3. Is the height of a rocket a function of time? Why?
4. James says that since $y=|x|$ is a function, then $x=|y|$ is a function. Is he correct? Why?

IV. Answer Key

1. no, $x=3$ maps to $y=4$ and $y=2$
2. yes
3. yes
4. yes
5. yes
6. no, $x=-5$ maps to $y=2$ and $y=10$
7. no, fails vertical line test
8. yes
9. no, fails vertical line test
10. yes
11. no, answers will vary. One possible: $x=9$ maps to $y=3$ and $y=-3$
12. yes
13. yes
14. $D=\{-5,-3,-1,0\}, R=\{0,1,2,3\}$
15. $D=\{-4,-2,0,1\}, R=\left\{\frac{1}{4}, \frac{1}{2}\right\}$
16. $D=\left\{-\frac{2}{3}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}\right\}, R=\{-1,0,1\}$
17. $D=\{-7,1,8\}, R=\{-11,4,6\}$
18. $D=\{x \in \mathbb{R}\}, R=\{y \in \mathbb{R}\}$
19. $D=\{x \in \mathbb{R} \mid x \geq 0\}, R=\{y \in \mathbb{R} \mid y \geq 0\}$
20. $D=\{x \in \mathbb{R}\}, R=\{y \in \mathbb{R} \mid y \geq-3\}$
21. $D=\{x \in \mathbb{R}\}, R=\{y \in \mathbb{R} \mid y \geq 0\}$

Challenge Problems

1. yes; vertical line test
2. no; people of the same height have different weights; a given height maps to more than one weight
3. yes; at any given time the rocket is at exactly one height; a give time maps to exactly one height
4. no, $y=|x|$ for any x there is exactly one absolute value for $x=|y|$ for a value of $x>0$ there are two $|y|$; one example if $x=2, y=2$ or -2
