

www.MathWorksheetsGo.com On Twitter: twitter.com/engagingmath On FaceBook: www.mathworksheetsgo.com/facebook

> I. Model Problems. II. Practice III. Challenge Problems IV. Answer Key

Web Resources

Relations & Functions : <u>www.mathwarehouse.com/algebra/relation/</u> Domain and Range of a Function/relation: <u>www.mathwarehouse.com/algebra/relation/math-function.php</u>

> © <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Graph Paper Maker (free): www.mathworksheetsgo.com/paper/

Online Graphing Calculator(free): www.mathworksheetsgo.com/calculator/

Functions versus Relations

A function is a relation in which each element of the domain maps to exactly on element of the range.

I. Model Problems

In these examples we will determine if the relation is a function, identify the domain, and identify the range.

Example 1: $\{(-6,7), (8,14), (3,2), (1,-4)\}$ Check the ordered pairs to determine if every *x*-value $\{(-6,7),(8,14),(3,2),(1,-4)\}$ maps to exactly one *v*-value. Domain is the *x*-values.

Range is the *y*-values

 $\{(-6, 7), (8, 14), (3, 2), (1, -4)\}$ $D = \{-6, 1, 3, 8\}$ $\{(-6, \mathbf{7}), (8, \mathbf{14}), (3, \mathbf{2}), (1, \mathbf{-4})\}$ $R = \{-4, 2, 7, 14\}$

Answer: function, $D = \{-6, 1, 3, 8\}, R = \{-4, 2, 7, 14\}$

Example 2: ${(4, -11), (3, 1), (0, 1), (2, 6), (3, -1), $	-1)}
Check the ordered pairs to determine if every	$\{(4, -11), (3, 1), (0, 1), (2, 6), (3, -1)\}$
<i>x</i> -value maps to exactly one <i>y</i> -value.	
x = 3 maps to both $y = 1$ and $y = -1$	$\{(4, -11), (3, 1), (0, 1), (2, 6), (3, -1)\}$
Domain is the <i>x</i> -values.	$\{(4, -11), (3, 1), (0, 1), (2, 6), (3, -1)\}$
	$D = \{0, 2, 3, 4\}$
Range is the y-values	$\{(4, -11), (3, 1), (0, 1), (2, 6), (3, -1)\}$
	$R = \{-11, -1, 1, 6\}$

Answer: not a function, $D = \{0, 2, 3, 4\}, R = \{-11, -1, 1, 6\}$

Example 3: y = 3x + 4

both directions.

Is there a value of x that maps to more than one y? If needed, check with vertical line test. The vertical lines represent *x*-values. If the lines do not hit the graph more than once the relations are functions.

(scale of graph is one) $D = \{x | x \in \mathbb{R}\}$

Domain is the *x*-values. The line continues in $R = \{x \mid x \in \mathbb{R}\}$

Range is the y-values. The line continues in both directions.

Answer: not a function, $D = \{x | x \in \mathbb{R}\}, R = \{x | x \in \mathbb{R}\}$

II. Practice Problems

Determine if the relation is a function

1. $\{(3,4), (4,-6), (5,-7), (3,2), (-2,5)\}$ 2. $\{(-4,6), (-3,2), (1,0), (7,6), (8,2)\}$ 3. $\{(-3,4), (-2,5), (0,0), (-2,5), (4,8)\}$ 4.

5. y x -3 2 -1-5_ 4 7. 9. 11. $x = y^2$

13. $y = x^2$

6.

12. $x = \sqrt{y}$

Determine the Domain and Range of each relation.

III. Challenge Problems

1. Is the relation graphed below a function? Justify your answer.

- 2. Is a person's weight a function of their height? Why?
- 3. Is the height of a rocket a function of time? Why?
- 4. James says that since y = |x| is a function, then x = |y| is a function. Is he correct? Why?

IV. Answer Key 1. no, x = 3 maps to y = 4 and y = 22. yes 3. yes 4. yes 5. yes 6. no, x = -5 maps to y = 2 and y = 107. no, fails vertical line test 8. yes 9. no, fails vertical line test 10. yes 11. no, answers will vary. One possible: x=9 maps to y=3 and y=-312. yes 13. yes $14. D = \{-5, -3, -1, 0\}, R = \{0, 1, 2, 3\}$ 15. $D = \{-4, -2, 0, 1\}, R = \{\frac{1}{4}, \frac{1}{2}\}$ 16. $D = \left\{-\frac{2}{3}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}\right\}, R = \{-1, 0, 1\}$ $17. D = \{-7, 1, 8\}, R = \{-11, 4, 6\}$ 18. $D = \{x \in \mathbb{R}\}, R = \{y \in \mathbb{R}\}$ 19. $D = \{x \in \mathbb{R} | x \ge 0\}, R = \{y \in \mathbb{R} | y \ge 0\}$ 20. $D = \{x \in \mathbb{R}\}, R = \{y \in \mathbb{R} | y \ge -3\}$ 21. $D = \{x \in \mathbb{R}\}, R = \{y \in \mathbb{R} | y \ge 0\}$

Challenge Problems

- 1. yes; vertical line test
- 2. no; people of the same height have different weights; a given height maps to more than one weight
- 3. yes; at any given time the rocket is at exactly one height; a give time maps to exactly one height
- 4. no, y = |x| for any x there is exactly one absolute value for x = |y| for a value of x > 0 there are two |y|; one example if x = 2, y = 2 or 2